Учёные доказали, что Вселенная расширяется, с помощью красного света. Как открывали расширение вселенной Галактика расширяется

Хирургия 29.12.2023
Хирургия

Наше Солнце и ближайшие к нему звезды составляют часть обширного звездного скопления, называемого нашей Галактикой, или Млечным Путем. Долгое время считалось, что это и есть вся Вселенная. И лишь в 1924 г. американский астроном Эдвин Хаббл показал, что наша Галактика не единственная. Существует множество других галактик, разделенных гигантскими участками пустого пространства. Чтобы доказать это, Хабблу пришлось измерить расстояния до других галактик. Мы можем определять расстояния до ближайших звезд, фиксируя изменения их положения на небесном своде по мере обращения Земли вокруг Солнца. Но, в отличие от ближних звезд, другие галактики находятся столь далеко, что выглядят неподвижными. Поэтому Хаббл вынужден был использовать косвенные методы измерения расстояний.

В настоящее время видимая яркость звезд зависит от двух факторов - фактической светимости и удаленности от Земли. Для наиболее близких звезд мы можем измерить и видимую яркость, и расстояние, что позволяет вычислить их светимость. И наоборот, зная светимость звезд в других галактиках, мы можем вычислить расстояние до них, измерив их яркость. Хаббл утверждал, что определенные типы звезд всегда имеют одну и ту же светимость в тех случаях, когда они расположены от нас на достаточно близких расстояниях, позволяющих провести измерения. Обнаружив подобные звезды в другой галактике, мы можем предполагать, что они имеют ту же светимость. Это позволит нам вычислить расстояния до иной галактики. Если мы проделаем это для нескольких звезд в какой-то галактике и полученные значения совпадут, то можно быть вполне уверенным в полученных нами результатах. Подобным образом Эдвин Хаббл сумел вычислить расстояния до девяти разных галактик.

Сегодня мы знаем, что наша Галактика лишь одна из нескольких сотен миллиардов наблюдаемых в современные телескопы галактик, каждая из которых может содержать сотни миллиардов звезд. Мы живем в Галактике, поперечник которой около ста тысяч световых лет. Она медленно вращается, и звезды в ее спиральных рукавах делают примерно один оборот вокруг ее центра за сто миллионов лет. Наше Солнце представляет собой самую обычную, средних размеров желтую звезду близ внешнего края одного из спиральных рукавов. Несомненно, мы прошли долгий путь со времен Аристотеля и Птолемея, когда Земля считалась центром Вселенной.

Звезды так далеки от нас, что кажутся всего лишь крошечными светящимися точками. Мы не можем различить их размер или форму. Каким же образом ученые их классифицируют? Для подавляющего большинства звезд надежно определяется только один параметр, который можно наблюдать, - цвет их
излучения. Ньютон обнаружил, что пропущенный через призму солнечный свет распадается на составляющий его набор цветов (спектр), такой же, как у радуги. Сфокусировав телескоп на определенной звезде или галактике, можно наблюдать спектр света данного объекта. Разные звезды обладают разными спектрами, но относительная яркость отдельных цветов спектра практически всегда соответствует той, которую можно обнаружить в свечении сильно раскаленных объектов. Это позволяет по спектру звезды вычислить ее температуру. Более того, в спектре звезды можно обнаружить отсутствие некоторых специфических цветов, причем цвета эти у каждой звезды свои. Известно, что каждый химический элемент поглощает характерный именно для него набор цветов. Таким образом, выявляя линии, отсутствующие в спектре излучения звезды, мы можем точно определять, какие химические элементы содержатся в ее внешнем слое.

Приступив в 1920-х гг. к исследованию спектров звезд в других галактиках, астрономы обнаружили поразительный факт: в них отсутствовал тот же самый набор цветовых линий, что и у звезд нашей Галактики, но все линии были смещены на одинаковую величину в направлении красной части спектра. Единственное разумное объяснение заключалось в том, что галактики удаляются от нас и это вызывает понижение частоты световых волн (так называемое красное смещение) вследствие эффекта Доплера.

Прислушайтесь к шуму машин на шоссе. По мере того как автомобиль приближается к вам, звук его двигателя становится все выше сообразно частоте звуковых волн и делается ниже, когда машина удаляется. То же происходит и со световыми или радиоволнами. Действительно, эффектом Доплера пользуется дорожная полиция, определяя скорость автомобиля по изменению частоты посылаемого и принимаемого радиосигнала (сдвиг частоты при этом зависит от скорости отражающего объекта, то есть автомобиля).

После того как Хаббл открыл существование других галактик, он занялся составлением каталога расстояний до них и наблюдениями их спектров. В то время многие полагали, что галактики двигаются совершенно хаотически и, следовательно, в одинаковом количестве их должны обнаруживаться спектры, имеющие как красное смещение, так и синее. Каково же было общее удивление, когда обнаружилось, что все галактики демонстрируют красное смещение. Каждая из них удаляется от нас. Еще более поразительными оказались результаты, опубликованные Хабблом в 1929 г.: даже величина красного смещения у каждой из галактик не случайна, но пропорциональна расстоянию между галактикой и Солнечной системой. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется.

Это означало, что Вселенная никак не может быть стационарной, как принято было думать ранее, на деле она расширяется. Расстояния между галактиками постоянно растут. Открытие того, что Вселенная расширяется, стало одной из главных интеллектуальных революций XX в. Оглядываясь в прошлое, легко удивляться, почему никто не додумался до этого раньше. Ньютону и прочим следовало бы понять, что стационарная Вселенная быстро схлопнулась бы под влиянием тяготения. Но представьте, что Вселенная не стационарна, а расширяется. При малых скоростях расширения сила тяготения рано или поздно остановила бы его и положила начало сжатию. Однако если бы скорость расширения превосходила некоторое критическое значение, то силы тяготения было бы недостаточно, чтобы его остановить и Вселенная расширялась бы вечно. Нечто подобное происходит при запуске ракеты
с поверхности Земли. Если ракета не разовьет нужной скорости, сила тяготения остановит ее и она начнет падать назад. С другой стороны, при скорости выше некоторой критической величины (около 11,2 км/с) силы тяготения не смогут удерживать ракету возле Земли, и она будет вечно удаляться от нашей планеты.

Подобное поведение Вселенной можно было предсказать на основе ньютоновского закона всемирного тяготения еще в XIX в., и в XVIII в., даже в конце XVII в. Однако вера в стационарную Вселенную была столь незыблема, что продержалась до начала XX столетия. Сам Эйнштейн в 1915 г., когда он сформулировал общую теорию относительности, сохранял убежденность в стационарности Вселенной. Не в силах рас-статься с этой идеей, он даже модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Эта величина характеризовала некую силу антигравитации, в отличие от всех других физических сил не исходящую из конкретного источника, а «встроенную» в саму ткань пространства-времени. Космологическая постоянная придавала пространству-времени внутренне присущую тенденцию к расширению, и это могло быть сделано для уравновешивания взаимного притяжения всей присутствующей во Вселенной материи, то есть ради стационарности Вселенной. Похоже, в те годы лишь один человек готов был принять общую теорию относительности за чистую монету. Пока Эйнштейн и другие физики искали путь, позволяющий обойти нестационарносгь Вселенной, которая вытекала из общей теории относительности, российский физик Александр Фридман вместо этого предложил свое объяснение.

МОДЕЛИ ФРИДМАНА

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решить их в деталях.

А потому Фридман предложил вместо этого принять два простых допущения:

(1) Вселенная выглядит совершенно одинаково во всех направлениях;
(2) это условие справедливо для всех ее точек.

На основе общей теории относительности и этих двух простых предположений Фридману удалось показать, что мы не должны ожидать от Вселенной стационарности. На самом деле он в 1922 г. точно предсказал то, что Эдвин Хаббл открыл несколько лет спустя.

Предположение о том, что Вселенная выглядит одинаковой во всех направлениях, конечно же, не совсем отвечает реальности. Например, звезды нашей Галактики составляют на ночном небе отчетливо видимую светящуюся полосу, называемую Млечным Путем. Но если мы обратим свой взгляд на далекие галактики, число их, наблюдаемое в разных на-правлениях, окажется примерно одинаковым. Так что Все-ленная, похоже, сравнительно однородна во всех направлениях, если рассматривать ее в космических масштабах, сопоставимых с расстояниями между галактиками.

Долгое время это считалось достаточным обоснованием предположения Фридмана - грубым приближением к реальной Вселенной. Однако сравнительно недавно счастливый случай доказал, что предположение Фридмана описывает наш мир с замечательной точностью. В 1965 г. американские физики Арно Пензиас и Роберт Уилсон работали в лаборатории фирмы «Белл» в штате Нью-Джерси над сверхчувствительным приемником микроволнового излучения для связи с орбитальными искусственными спутниками. Их сильно беспокоило, что приемник улавливает больше шума, чем следовало бы, и что шум этот не исходит из какого-либо определенного направления. Поиск причины шума они начали с того, что очистили свою большую рупорную антенну от скопившегося внутри нее птичьего помета и исключили возможные неисправности. Им было известно, что любой шум атмосферного происхождения усиливается, когда антенна направлена не строго вертикально вверх, потому что атмосфера выглядит толще, если смотреть под углом к вертикали.

Дополнительный шум оставался одинаковым независимо от того, в каком направлении поворачивали антенну, а потому источник шума должен был находиться за пределами атмосферы. Шум оставался неизменным и днем и ночью на протяжении всего года, несмотря на вращение Земли вокруг ее оси и обращение вокруг Солнца. Это указывало, что источник излучения находится за пределами Солнечной системы и даже вне нашей Галактики, иначе интенсивность сигнала менялась бы по мере того, как в соответствии с движением Земли антенна оказывалась обращенной в разных направлениях.

Действительно, мы теперь знаем, что излучение по пути к нам должно было пересечь всю обозримую Вселенную. Коль скоро оно одинаково в разных направлениях, то и Вселенная должна быть однородна во всех направлениях (по крайней мере, в больших масштабах). Нам известно, что в каком бы направлении мы ни обратили свой взгляд, колебания «фонового шума» космического излучения не превышают 1/10 000. Так что Пензиас и Уилсон случайно натолкнулись на поразительно точное подтверждение первого предположения Фридмана.

Примерно в то же время два других американских физика из расположенного неподалеку, в том же штате Нью-Джерси, Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались космическим микроволновым излучением. Они работали над гипотезой Джорджа (Георгия) Гамова, который некогда был студентом Александра Фридмана, о том, что на самой ранней стадии развития Вселенная была исключительно плотной и горячей, нагретой до «белого каления». Дик и Пиблс пришли к выводу, что мы все еще можем наблюдать ее прошлое свечение, поскольку свет из самых далеких частей ранней Вселенной только-только достигает Земли. Однако вследствие расширения Вселенной этот свет, по-видимому, претерпел столь большое красное смещение, что теперь должен восприниматься нами в виде микроволнового излучения. Дик и Пиблс как раз вели поиски такого излучения, когда Пензиас и Уилсон, прослышав об их работе, поняли, что уже нашли искомое. За это открытие Пензиас и Уилсон были удостоены Нобелевской премии по физике 1978 г., что кажется несколько несправедливым по отношению к Дику и Пиблсу.

На первый взгляд, эти доказательства того, что Вселенная выглядит одинаково во всех направлениях, заставляют предположить, что Земля занимает какое-то особое место во Вселенной. Например, можно вообразить, что, коль скоро все галактики удаляются от нас, мы находимся в самом центре космоса. Имеется, однако, альтернативное объяснение: Вселенная может выглядеть одинаково во всех направлениях и из любой другой галактики. Таково, как уже упоминалось, было второе предположение Фридмана.

У нас нет никаких доказательств, подтверждающих или опровергающих это предположение. Мы принимаем его на веру лишь из скромности. Было бы в высшей степени удивительно, если бы Вселенная выглядела одинаковой во всех направлениях вокруг нас, но не вокруг любой другой точки. В модели Фридмана все галактики удаляются друг от друга. Представьте воздушный шарик, на поверхности которого нарисованы пятнышки. При надувании шарика расстояние между любыми двумя пятнышками увеличивается, однако ни одно из них нельзя называть центром расширения. Более того, чем дальше расходятся пятнышки, тем быстрее они удаляются друг от друга. Сходным образом в модели Фридмана скорость разбегания любых двух галактик пропорциональна расстоянию между ними. Отсюда следует, что величина красного смещения галактик должна быть прямо пропорциональна их удаленности от Земли, что и обнаружил Хаббл.

Несмотря на то что модель Фридмана была удачной и оказалась соответствующей результатам наблюдений Хаббла, она долгое время оставалась почти неизвестной на Западе. О ней узнали лишь после того, как в 1935 г. американский физик Говард Робертсон и английский математик Артур Уокер разработали сходные модели для объяснения открытого Хабблом однородного расширения Вселенной.

Хотя Фридман предложил только одну модель, на основе двух его фундаментальных предположений можно построить три разные модели. В первой из них (именно ее и сформулировал Фридман) расширение происходит настолько медленно, что гравитационное притяжение между галактиками постепенно еще больше замедляет его, а потом и останавливает. Галактики тогда начинают двигаться друг к другу, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала возрастает от нуля до некоторого максимума, а затем вновь уменьшается до нуля.

Во втором решении скорость расширения столь велика, что тяготение никогда не может его остановить, хотя и несколько замедляет. Разделение соседних галактик в этой модели начинается с нулевого расстояния, а затем они разбегаются с постоянной скоростью. Наконец, существует третье решение, в котором скорость расширения Вселенной достаточна лишь для того, чтобы предотвратить обратное сжатие, или коллапс. В этом случае разделение также начинается с нуля и возрастает бесконечно. Однако скорость разлета постоянно уменьшается, хотя и никогда не достигает нуля.

Замечательной особенностью первого типа модели Фридмана является то, что Вселенная не бесконечна в пространстве, но пространство не имеет границ. Гравитация в этом случае настолько сильна, что пространство искривляется, замыкаясь само на себя наподобие поверхности Земли. Путешествующий по земной поверхности в одном направлении никогда не встречает непреодолимого препятствия и не рискует свалиться с «края Земли», а попросту возвращается в исходную точку. Таково пространство в первой модели Фридмана, но вместо присущих земной поверхности двух измерений оно имеет три. Четвертое измерение - время - обладает конечной протяженностью, но его можно уподобить линии с двумя краями или границами, началом и концом. Далее мы покажем, что комбинация положений общей теории относительности и принципа неопределенности квантовой механики допускает конечность пространства и времени при одновременном отсутствии у них каких-либо пределов или границ. Идея о космическом страннике, обогнувшем Вселенную и вернувшемся в исходную точку, хороша для фантастических рассказов, однако не имеет практической ценности, поскольку - и это можно доказать - Вселенная сократится до нулевых размеров, прежде чем путешественник вернется к старту. Для того чтобы успеть вернуться в начальную точку раньше, чем Вселенная перестанет существовать, этот бедолага должен перемещаться быстрее света, чего, увы, не допускают известные нам законы природы.

Какая же модель Фридмана соответствует нашей Вселенной? Остановится ли расширение Вселенной, уступив место сжатию, или будет продолжаться вечно? Чтобы ответить на этот вопрос, нам необходимо знать скорость расширения Вселенной и ее среднюю плотность в настоящее время. Если эта плотность меньше некоторого критического значения, определяемого скоростью расширения, гравитационное притяжение будет слишком слабым для того, чтобы остановить разбегание галактик. Если же плотность больше критического значения, гравитация рано или поздно остановит расширение и начнется обратное сжатие.

Мы можем определить текущую скорость расширения путем измерения скоростей, с которыми другие галактики удаляются от нас, используя эффект Доплера. Это можно проделать с высокой точностью. Однако расстояния до галактик известны не очень хорошо, поскольку мы измеряем их косвенными методами. Нам известно одно: Вселенная расширяется примерно на 5-10 % за каждый миллиард лет. Впрочем, наши оценки нынешней плотности вещества во Вселенной грешат еще большей неопределенностью.

Если мы суммируем массу всех видимых нам звезд нашей и других галактик, итог будет меньше одной сотой того значения, которое необходимо для остановки расширения Вселенной даже при самой низкой его скорости. Впрочем, нам известно, что в нашей и других галактиках содержится большое количество темной материи, которую мы не можем наблюдать непосредственно, влияние которой, однако, обнаруживается через ее гравитационное воздействие на орбиты звезд и галактический газ. Более того, большинство галактик образуют гигантские скопления, и можно предположить присутствие еще большего количества темной материи между галактиками в этих скоплениях по тому эффекту, которое она оказывает на движение галактик. Но, даже добавив всю эту темную материю, мы получим одну десятую того, что необходимо для остановки расширения. Впрочем, возможно, существуют иные, пока не выявленные нами формы материи, которые могли бы поднять среднюю плотность Вселенной до критического значения, способного остановить расширение.

Таким образом, существующее свидетельство предполагает, что Вселенная, по-видимому, будет расширяться вечно. Но не стоит делать ставку на это. Мы можем быть уверены только в том, что если Вселенной суждено схлопнуться, произойдет это не раньше чем через десятки миллиардов лет, поскольку расширялась она как минимум на протяжении такого же временного промежутка. Так что не стоит беспокоиться раньше срока. Если мы не сумеем расселиться за пределами Солнечной системы, человечество погибнет задолго до того вместе с нашей звездой, Солнцем.

БОЛЬШОЙ ВЗРЫВ

Характерной чертой всех решений, вытекающих из модели Фридмана, является то, что в соответствии с ними в далеком прошлом, 10 или 20 млрд лет назад, расстояние между соседними галактиками во Вселенной должно было равняться нулю. В этот момент времени, получивший название Большого Взрыва, плотность Вселенной и кривизна пространства-времени были бесконечно большими. Это означает, что общая теория относительности, на которой основаны все решения модели Фридмана, предсказывает существование во Вселенной особой, сингулярной точки.

Все наши научные теории построены на предположении, что пространство-время является гладким и почти плоским, так что все они разбиваются о специфичность (сингулярность) Большого Взрыва, где кривизна пространства-времени бесконечна. Это означает, что, если какие-то события и происходили до Большого Взрыва, их нельзя использовать для установления того, что происходило после, потому что всякая предсказуемость в момент Большого Взрыва была нарушена. Соответственно, зная только то, что происходило после Большого Взрыва, мы не можем установить, что происходило до него. Применительно к нам все события до Большого Взрыва не имеют никаких последствий, а потому не могут быть частью научной модели Вселенной. Мы должны исключить их из модели и сказать, что время имело началом Большой Взрыв.

Многим не нравится идея о том, что время имеет начало, вероятно, потому, что она отдает божественным вмешательством. (С другой стороны, Католическая церковь ухватилась за модель Большого Взрыва и в 1951 г. официально провозгласила, что эта модель соответствует Библии.) Предпринимались попытки избежать вывода, что Большой Взрыв вообще был. Самую широкую поддержку получила теория стационарной Вселенной. Предложили ее в 1948 г. бежавшие из оккупированной нацистами Австрии Герман Бонди и Томас Голд совместно с британцем Фредом Хойлом, который в годы войны работал вместе с ними над усовершенствованием радаров. Их идея состояла в том, что, по мере того как галактики разбегаются, в пространстве между ними из вновь образующейся материи постоянно формируются новые галактики. Потому-то Вселенная и выглядит примерно одинаковой во все времена, а также из любой точки пространства.

Теория стационарной Вселенной требовала такого изменения общей теории относительности, которое допускало бы постоянное образование новой материи, но скорость ее образования была настолько низкой - около одной элементарной частицы на кубический километр в год, - что идея Бонди, Голда и Хойла не вступала в противоречие с опытными данными. Их теория была «добротной», то есть достаточно простой и предлагающей ясные предсказания, которые могут быть проверены экспериментально. Одно из таких предсказаний заключалось в том, что число галактик или сходных с ними объектов в любом данном объеме пространства будет одним и тем же, куда бы и когда бы мы ни взглянули во Вселенной.

В конце 1950-х - начале 1960-х гг. группа астрономов из Кембриджа, возглавляемая Мартином Райлом, исследовала источники радиоизлучения в космическом пространстве. Выяснилось, что большая часть таких источников должна лежать за пределами нашей Галактики и что слабых среди них гораздо больше, чем сильных. Слабые источники были признаны более удаленными, а сильные - более близкими. Очевидным стало и другое: число близких источников, приходящееся на единицу объема, меньше, чем дальних.

Это могло означать, что мы располагаемся в центре обширного района, где плотность источников радиоизлучения значительно ниже, чем в остальной Вселенной. Или то, что в прошлом, когда радиоволны только начинали свой путь к нам, источников излучения было гораздо больше, чем сейчас. И первое и второе объяснения противоречили теории стационарной Вселенной. Более того, обнаруженное Пензиасом и Уилсоном в 1965 г. микроволновое излучение также свидетельствовало, что когда-то в прошлом Вселенная должна была иметь гораздо большую плотность. Так что теорию стационарной Вселенной похоронили, пусть и не без сожаления.

Еще одну попытку обойти вывод о том, что Большой Взрыв был и время имеет начало, предприняли в 1963 г. советские ученые Евгений Лифшиц и Исаак Халатников. Они предположили, что Большой Взрыв может представлять собой некую специфическую особенность моделей Фридмана, которые, в конце концов, являются всего лишь приближением к реальной Вселенной. Возможно, из всех моделей, приближенно описывающих реальную Вселенную, лишь модели Фридмана содержат сингулярность Большого Взрыва. В этих моделях галактики разбегаются в космическом пространстве по прямым линиям.

Поэтому неудивительно, что когда-то в прошлом все они находились в одной точке. В реальной Вселенной, однако, галактики разбегаются не по прямым, а по чуть искривленным траекториям. Так что на исходной позиции они располагались не в одной геометрической точке, а просто очень близко друг к другу. Поэтому представляется вероятным, что современная расширяющаяся Вселенная возникла не из сингулярности Большого Взрыва, а из более ранней фазы сжатия; при коллапсе Вселенной не все частицы должны были обязательно столкнуться друг с другом, некоторые из них могли избежать прямого столкновения и разлететься, создав наблюдаемую нами ныне картину расширения Вселенной. Можно ли тогда говорить, что реальная Вселенная началась с Большого Взрыва?

Лифшиц и Халатников изучили модели Вселенной, приближенно похожие на фридмановские, но принимавшие в расчет неоднородности и случайное распределение скоростей галактик в реальной Вселенной. Они показали, что такие модели тоже могут начинаться с Большого Взрыва, даже если галактики не разбегаются строго по прямым линиям. Однако Лифшиц и Халатников утверждали, что такое возможно только в отдельных определенных моделях, где все галактики движутся прямолинейно.

Поскольку среди моделей, подобных фридмановским, гораздо больше тех, которые не содержат сингулярности Большого Взрыва, чем тех, что ее содержат, рассуждали ученые, мы должны заключить, что вероятность Большого Взрыва крайне низка. Однако в дальнейшем им пришлось признать, что класс моделей, подобных фридмановским, которые содержат сингулярности и в которых галактики не должны двигаться каким-то особым образом, гораздо обширнее. И в 1970 г. они вообще отказались от своей гипотезы.

Работа, проделанная Лифшицем и Халатниковым, имела ценность, потому что показала: Вселенная могла иметь сингулярность - Большой Взрыв, - если общая теория относительности верна. Однако они не разрешили жизненно важного вопроса: предсказывает ли общая теория относительности, что у нашей Вселенной должен был быть Большой Взрыв, начало времени? Ответ на это дал совершенно иной подход, предложенный впервые английским физиком Роджером Пенроузом в 1965 г. Пенроуз использовал поведение так называемых световых конусов в теории относительности и тот факт, что гравитация всегда вызывает притяжение, чтобы показать, что звезды, переживающие коллапс под воздействием собственного тяготения, заключены в пределах области, чьи границы сжимаются до нулевых размеров. Это означает, что все вещество звезды стягивается в одну точку нулевого объема, так что плотность материи и кривизна пространства-времени становятся бесконечными. Другими словами, налицо сингулярность, содержащаяся в области пространства-времени, известной как черная дыра.

На первый взгляд, выводы Пенроуза ничего не говорили о том, существовала ли в прошлом сингулярность Большого Взрыва Однако в то самое время, когда Пенроуз вывел свою теорему, я, тогда аспирант, отчаянно искал математическую задачу, которая позволила бы мне завершить диссертацию. Я понял, что, если обратить вспять направление времени в теореме Пенроуза, чтобы коллапс сменился расширением, условия теоремы останутся прежними, коль скоро нынешняя Вселенная приближенно соответствует фридмановской модели в больших масштабах. Из теоремы Пенроуза вытекало, что коллапс любой звезды заканчивается сингулярностью, а мой пример с обращением времени доказывал, что любая фридмановская расширяющаяся Вселенная должна возникать из сингулярности. По чисто техническим причинам теорема Пенроуза требовала, чтобы Вселенная была бесконечна в пространстве. Я мог использовать это для доказательства того, что сингулярности возникают лишь в одном случае: если высокая скорость расширения исключает обратное сжатие Вселенной, потому что только фридмановская модель бесконечна в пространстве.

Несколько следующих лет я разрабатывал новые математические приемы, которые позволили бы исключить это и другие технические условия из теорем, доказывающих, что сингулярности должны существовать. Результатом стала опубликованная в 1970 г. Пенроузом и мной совместная статья, утверждавшая, что сингулярность Большого Взрыва должна была существовать при условии, что общая теория относительности справедлива и количество вещества во Вселенной соответствует тому, которое мы наблюдаем.

Последовала масса возражений, частично от советских ученых, которые придерживались «партийной линии», провозглашенной Лифшицем и Халатниковым, а частично от тех, кто питал отвращение к самой идее сингулярности, оскорбляющей красоту теории Эйнштейна. Впрочем, с математической теоремой трудно поспорить. Поэтому ныне широко признано, что Вселенная должна была иметь начало.

  • Перевод

Если Вселенная расширяется, можно понять, почему далёкие галактики удаляются от нас. Но почему не расширяются звёзды, планеты и атомы?

Одним из крупнейших научных сюрпризов XX века стало открытие расширения Вселенной. Удалённые галактики разбегаются от нас и друг от друга быстрее, чем ближе расположенные, будто бы растягивается сама ткань пространства. На крупнейших масштабах плотность материи и энергии Вселенной падали миллиарды лет, и продолжают это делать. А если мы заглянем достаточно далеко, мы увидим галактики, разлетающиеся так быстро, что ничто, что мы могли бы отправить к ним сегодня, не сможет их догнать – не хватит даже скорости света. Но нет ли в этом парадокса? Именно об этом спрашивает читатель:

Если вселенная расширяется быстрее скорости света, почему это не влияет на нашу солнечную систему и расстояния от Солнца до планет? И почему относительное расстояние между звёздами нашей галактики не увеличивается… или оно увеличивается?

Мысль читателя верна, и Солнечная система, расстояния между планетами и звёздами не увеличиваются при расширении Вселенной. Так что же расширяется в расширяющейся Вселенной? Давайте разбираться.



Первоначальное представление о пространстве, выдвинутое Ньютоном, как о фиксированном, абсолютном и неизменном. Это была сцена, на которой массы могли существовать и притягиваться

Когда Ньютон впервые задумался о Вселенной, он представлял себе пространство в виде сетки. Это была абсолютная, фиксированная сущность, наполненная массами, гравитационно притягивающимися друг к другу. Но когда появился Эйнштейн, он понял, что эта воображаемая сетка не фиксирована, не абсолютна, и не похожа на представление Ньютона. Эта сетка похожа на ткань, и эта ткань искривлена, искажена и меняется со временем из-за присутствия материи и энергии. Более того, материя и энергия определяют её искривление.


Искривление пространства-времени гравитационными массами согласно ОТО

Но если бы в вашем пространстве-времени был только набор различных масс, они неизбежно бы схлопнулись и сформировали чёрную дыру. Эйнштейну эта идея не нравилась, поэтому он добавил «поправку» в виде космологической константы. Если существует этот дополнительный член уравнения – дополнительная энергия, пронизывающая пустое пространство – она может отталкивать все эти массы и удерживать Вселенную в неподвижности. Она предотвратит гравитационный коллапс. Добавив её, Эйнштейн позволял Вселенной существовать в почти неподвижном состоянии вечно.

Но не всех привлекала идея статичной Вселенной. Одно из первых решений получил физик по имени Александр Фридман . Он показал, что если не добавлять эту космологическую константу, и заполнить Вселенную энергией – материей, излучением, пылью, жидкостями, и т.д. – то существует два класса решений: один для сжимающейся Вселенной, а другой для расширяющейся.


Модель расширения Вселенной в виде «хлеба с изюмом», где относительные расстояния увеличиваются при расширении пространства (теста)

Математика даёт вам возможные решения, но вам нужно посмотреть на физическую Вселенную, чтобы узнать, какое из них её описывает. Это произошло в 1920-х годах благодаря работам Эдвина Хаббла . Хаббл первым открыл, что можно измерить характеристики отдельных звёзд в других галактиках и определить расстояние до них. Скомбинировав эти измерения с работами Весто Слайфера, показавшего, что у этих объектов происходит сдвиг атомного спектра, он получил удивительный результат.


График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) соответствует Вселенной, быстро расширявшейся в прошлом, но до сих пор расширяющейся и сегодня. Это современная версия работы Хаббла, расширенная на расстояния в тысячи раз большие первоначальных

Либо вся теория относительности неверна, мы находимся в центре Вселенной и всё симметрично убегает от нас, либо теория относительности верна, Фридман прав, и чем дальше от нас галактика, тем быстрее она в среднем удаляется от нас. Одним движением теория расширяющейся Вселенной перешла от простой идеи к лидирующему описанию Вселенной.

Расширение работает немного контринтуитивно. Выглядит всё так, будто ткань пространства со временем растягивается, и все объекты в этом пространстве растаскиваются друг от друга. Чем дальше объект отстоит от другого, тем больше между ними растяжения, тем быстрее они удаляются друг от друга. Если бы у нас была однородно заполненная материей Вселенная, то материя просто становилась бы менее плотной и каждый её участок со временем отдалялся бы от всех остальных.


Холодные флуктуации (синий) реликтового излучения по сути не холоднее, а просто представляют участки, в которых имеется большее гравитационное притяжение из-за большей плотности материи. Горячие участки (красный) горячее, потому что излучение в этих участках живёт в более мелком гравитационном колодце. Со временем более плотные участки превратятся в звёзды, галактики и скопления с большей вероятностью, а менее плотные – с меньшей.

Но Вселенная не является идеально равномерной. В ней есть участки повышенной плотности, типа планет, звёзд, галактик, скоплений галактик. В ней есть участки пониженной плотности, такие, как огромные космические войды , где практически не встретить массивных объектов. Тому причиной наличие других физических явлений, кроме расширения Вселенной. На мелких масштабах, размером с животных и меньше, преобладают электромагнетизм и ядерные силы. На крупных масштабах – планеты, солнечные системы и галактики – преобладает гравитационное воздействие. На крупнейших масштабах – размерах, сравнимых со Вселенной – главная борьба разворачивается между расширением Вселенной и гравитационным притяжением всей имеющейся в ней материи и энергии.


На крупнейших масштабах Вселенная расширяется, и галактики удаляются друг от друга. На маленьких масштабах гравитация пересиливает расширение, что приводит к формированию звёзд, галактик и их скоплений

На крупнейших масштабах расширение побеждает. Самые удалённые галактики удаляются так быстро, что никакие сигналы, которые мы могли бы отправить к ним, даже со скоростью света, никогда до них не дойдут. Сверхскопления Вселенной – длинные, нитевидные структуры, вдоль которых выстраиваются галактики, тянущиеся на миллиарды световых лет – растягиваются и раздвигаются из-за расширения Вселенной. В относительно короткие сроки они исчезнут. И даже ближайшее к Млечному Пути скопление галактик, скопление Девы , находящееся всего в 50 миллионах световых лет от нас, не притянет нас к себе. Несмотря на гравитационное притяжение, более чем в тысячу раз превышающее наше собственное, расширение Вселенной растащит нас в стороны.


Крупный набор из многих тысяч галактик составляет наше ближайшее окружение в пределах 100 000 000 световых лет. Скопление Девы останется гравитационно связанным, но Млечный Путь продолжит со временем отдаляться от него

Но есть и масштабы поменьше, где расширение было побеждено – по крайней мере, локально. Скопление Девы останется связанным гравитационно. Млечный Путь и вся местная группа галактик останется связанной, и в итоге сольётся под действием гравитации. Земля так и будет двигаться по орбите вокруг Солнца на том же расстоянии, Земля останется того же размера, и атомы, из которых состоит всё, расширяться не будут. Почему? Потому, что расширение Вселенной работает только там, где другие взаимодействия – гравитационное, электромагнитное, ядерное – его не преодолели. Если какая-то сила способна удерживать объект в целости, даже расширение Вселенной не сможет его изменить.


Орбиты планет в системе TRAPPIST-1 не меняются с расширением Вселенной благодаря связующей силе гравитации, преодолевающей все последствия расширения

Этому есть неочевидная причина, связанная с тем, что расширение – это не взаимодействие, а больше скорость. Пространство расширяется на всех масштабах, но расширение воздействует только на все объекты совокупно. Между двумя точками пространство будет расширяться с определённой скоростью, но если эта скорость меньше скорости убегания между двумя объектами – если между ними действует связующая их сила – тогда расстояние между ними увеличиваться не будет. Нет увеличения расстояния, нет эффекта от расширения. В любой момент расширение преодолевается с запасом, поэтому оно никогда не приобретёт суммарный эффект, наблюдаемый между несвязанными между собой объектами. В результате стабильные, связные объекты могут выжить без изменений в расширяющейся Вселенной вечно.


Размеры стабильных, удерживаемых вместе объектов, будь они связаны гравитацией, электромагнетизмом или другой силой, не изменятся с расширением Вселенной. Если вам удастся преодолеть космическое расширение, вы останетесь связным навечно.

Пока Вселенная обладает измеренными нами свойствами, так всё и будет продолжаться. Тёмная энергия может существовать и заставлять удалённые галактики двигаться от нас с ускорением, но действие расширения на фиксированном расстоянии меняться не будет. Только в варианте

Так куда на самом деле расширяется вселенная? Да в никуда. Нет никакого космического шкафа, наполненного вещами. Но чтобы понять это, давайте посмотрим, что общая теория относительности говорит о пространстве-времени.

В ОТО (как говорят профессионалы), наиболее важным свойством пространства (и времени) является дистанция (и временной интервал) между двумя точками. На самом деле, дистанция в полной мере определяет пространство. Эволюция шкалы дистанции определяется количеством материи и энергии в пространстве, и по мере того как время идет, шкала увеличивается и дистанция между галактиками тоже. Однако - и в этом странность - это происходит и без фактического движения галактик.

Возможно, в этой точке ваша интуиция дала сбой. Но это не помешает нам разобраться в странностях.

Мы уже сказали о том, что галактики удаляются от нас. На самом деле нет. Просто ученым так проще объяснить происходящее на самом деле. Они обманывают вас.

«Но погодите!», - скажет самый научно подкованный из вас. - «Мы же измеряем допплеровский сдвиг удаленных галактик». Это так называемое «красное смещение», о котором вы знаете, фиксируется на Земле, и подобно сирене проезжающей скорой помощи, дает нам знать, что движение имеется. Но это не то, что происходит в космологических масштабах. Просто с тех пор, как далекие галактики испустили свет, и он добрался до нас, шкала пространства серьезно изменилась, выросла. Поскольку пространство расширилось, увеличилась и длина волны фотонов, поэтому свет отдает красным.

Из такого подхода вытекает другой вопрос: «Действительно ли Вселенная расширяется быстрее скорости света?». Абсолютно верно то, что большинство далеких галактик увеличивают свою дистанцию по отношению к нам быстрее скорости света, ну и что? Они не движутся быстрее света (они вообще стоят на месте). Более того, знание этого никак не поможет вам: информация-то не передается. Если вы отправите пакет с едой в другую галактику, быстрее, чем со скоростью света, этого не сделать (да и тут, в принципе, ). Скорость света остается универсальным ограничителем скорости.

Мы привели самое распространенное (ну или утвердившееся в сфере релятивистов) мнение по поводу космологического расширения, но будет логичным закончить на том, что мы вообще не понимаем. Все описанное выше, работает замечательно, если у вас есть место для шага вперед и растяжки. Но что произошло в самом начале такое, отчего образовалось пространство буквально из ничего? На этот вопрос у физики нет ответа. И придется ждать до тех пор, пока не появится и не прольет свет на этот вопрос.

МОСКВА, 26 янв - РИА Новости. Независимая группа ученых подтвердила, что Вселенная действительно расширяется сейчас еще быстрее, чем показывали расчеты, построенные на наблюдениях за "эхом" Большого Взрыва, говорится в серии из пяти статей, принятой к публикации в журнале Monthly Notices of Royal Astronomical Society.

"Расхождения в текущей скорости расширения Вселенной и тем, что показывают наблюдения за Большим взрывом, не только подтвердились, но и усилились благодаря новым данным по тому, как далекие галактики искривляют свет. Эти несовпадения могут быть порождены "новой физикой" за пределами Стандартной модели космологии, в частности, некой иной формой темной энергии", — заявил Фредерик Кубрин (Frederic Coubrin) из Федеральной политехнической школы в Лозанне (Швейцария).

Темные роды Вселенной

Еще в 1929 году знаменитый астроном Эдвин Хаббл доказал, что наша Вселенная не стоит на месте, а постепенно расширяется, наблюдая за движением далеких от нас галактик. В конце 20 века астрофизики обнаружили, наблюдая за сверхновыми первого типа, что она расширяется не с постоянной скоростью, а с ускорением. Причиной этого, как сегодня считают ученые, является темная энергия - загадочная субстанция, действующая на материю как своеобразная "антигравитация".

В июне прошлого года, нобелевский лауреат Адам Рисс (Adam Reiss) и его коллеги, открывшие этот феномен, вычислили точную скорость расширения Вселенной сегодня, используя переменные звезды-цефеиды в соседних галактиках, расстояние до которых можно вычислить со сверхвысокой точностью.

Астрофизики: расширение Вселенной замедлялось и ускорялось семь раз Процесс расширения нашей Вселенной идет своеобразными волнами – в одни периоды времени скорость этого "распухания" мироздания растет, а в другие эпохи она падает, что уже происходило как минимум семь раз.

Это уточнение дало крайне неожиданный результат - оказалось, что две галактики, разделенные расстоянием примерно в 3 миллиона световых лет, разлетаются со скоростью около 73 километров в секунду. Подобная цифра заметно выше, чем показывают данные, полученные при помощи орбитальных телескопов WMAP и Planck - 69 километров в секунду, и ее невозможно объяснить при помощи имеющихся у нас представлений о природе темной энергии и механизме рождения Вселенной.

Рисс и его коллеги предположили, что существует еще и третья "темная" субстанция - "темное излучение" (dark radiation), заставлявшее ее ускоряться быстрее теоретических предсказаний в первые дни жизни Вселенной. Подобное заявление не осталось без внимания, и коллаборация H0LiCOW, включающая в себя десятки астрономов со всех континентов планеты, начала проверку эту гипотезы, наблюдая за квазарами - активными ядрами далеких галактик.

Игра космических свечей и линз

Квазары, благодаря гигантской черной дыре в их центре, особым образом искривляют структуру пространства-времени, усиливая свет, проходящий через его окрестности, подобно гигантской линзе.

Если два квазара расположены друг за другом для наблюдателей на Земле, возникает интересная вещь - свет более далекого квазара расщепится при прохождении через гравитационную линзу первого ядра галактики. Из-за этого мы увидим не два, а пять квазаров, четыре из которых будут световыми "копиями" более далекого объекта. Что самое важное, каждая копия будет представлять собой "фотографию" квазара в разные периоды его жизни из-за того, что их свет тратил разное количество времени на выход из гравитационной линзы.


"Хаббл" помог ученым раскрыть неожиданно быстрое расширение Вселенной Оказалось,что Вселенная расширяется сейчас еще быстрее, чем показывали расчеты, построенные на наблюдениях за "эхом" Большого Взрыва. Это указывает на существование третьей загадочной "темной" субстанции - темного излучения или на неполноту теории относительности.

Продолжительность этого времени, как объясняют ученые, зависит от скорости расширения Вселенной, что позволяет вычислить ее, наблюдая за большим числом далеких квазаров. Этим и занимались участники H0LiCOW, отыскивая подобные "двойные" квазары и наблюдая за их "копиями".

В общей сложности Кубрин и его коллеги нашли три подобных квазарных "матрешки" и детально изучили их, используя орбитальные телескопы "Хаббл", "Спитцер" и ряд наземных телескопов на Гавайских островах и в Чили. Эти замеры, по словам исследователей, позволили им измерить постоянную Хаббла на "среднем" космологическом расстоянии с уровнем погрешности в 3,8%, что в разы лучше ранее полученных результатов.

Эти расчеты показали, что Вселенная расширяется со скоростью около 71,9 километров в секунду, что в целом соответствует тому результату, который Рисс и его коллеги получили на "близких" космологических расстояниях, и говорит в пользу существования некой третьей "темной" субстанции, разгонявшей Вселенную в ее юности. Другой вариант объяснения разночтений с данными - Вселенная на самом деле не является плоской, а напоминает сферу или "гармошку". Кроме того, возможно, что количество или свойства темной материи поменялись за последние 13 миллиардов лет, благодаря чему Вселенная начала расти быстрее.

Телескоп "Спитцер" пересчитал скорость расширения Вселенной Астрономы, работающие с космическим телескопом "Спитцер", представили наиболее точное в истории астрономии измерение постоянной Хаббла - скорости расширения Вселенной, говорится в сообщении Лаборатории реактивного движения (JPL) НАСА.

В любом случае, ученые планируют изучить еще примерно сто подобных квазаров для того, чтобы убедиться в достоверности полученных ими данных, и понять, как можно объяснить столь необычное поведение Вселенной, не укладывающееся в стандартные космологические теории.

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ

* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.

* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.

* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.

* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

НА ЧТО БЫЛ ПОХОЖ БОЛЬШОЙ ВЗРЫВ?

НЕВЕРНО : Вселенная родилась тогда, когда вещество, подобно бомбе, взорвалось в определенном месте. Давление было высоким в центре и низким в окружающей пустоте, что и вызвало разлет вещества.

ВЕРНО : Это был взрыв самого пространства, который привел вещество в движение. Наше пространство и время возникло в Большом взрыве и начало расширяться. Нигде не было центра, т.к. условия всюду были одинаковыми, никакого перепада давления, характерного для обычного взрыва, не было.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?

НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики.

ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет

ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю ($10^{–30}$) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ «ПАРАДОКСЫ БОЛЬШОГО ВЗРЫВА»
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.

Рекомендуем почитать

Наверх