Какой последовательности происходит процесс редупликации днк. Днк и гены

Воспаление 03.02.2024
Воспаление

Уважаемые старшеклассники! Эта рабочая тетрадь написана для того, чтобы вы научились отвечать на самые разные по типам и формулировкам вопросы. Часто их называют «Тестовыми заданиями». Для того, чтобы успешно это делать, необходимо знать, какие бывают задания, чем отличается один тип заданий от другого. Первая тема рабочей тетради имеет следующие части: обучающую, тренировочную и контрольную. Остальные темы содержат только тренировочную и контрольную части (зачеты). В обучающей части показаны примеры рассуждений, даются ответы на большинство вопросов и комментарии к ним. В тренировочной части ответы также приводятся, однако объяснить правильность выбора должны вы сами. Для этого в свободных строках нужно дописать необходимые аргументы, опровергающие неверные ответы. Заполненные строки подскажут логику рассуждений.
Наконец, в контрольной части вам полностью и самостоятельно нужно выполнить работу. Используя тетрадь при изучении курса «Общая биология», вы научитесь правильно понимать смысл задания, самостоятельно задавать вопросы и отвечать на них, доказывать правильность своих ответов и опровергать неверные ответы. В обучающей и тренировочной частях вы познакомитесь с заданиями разного уровня сложности, чаще всего встречающимися в разных проверочных работах. Контрольная часть также включает как совсем простые, так и более сложные вопросы. Практически все вопросы и задания направлены на подготовку к сдаче различных форм экзаменов, но, прежде всего, ЕГЭ. Именно с этим связана и такая структура, и такая форма рабочей тетради. Она рассчитана не только на индивидуальную, но и на совместную работу с учителем или с одноклассниками.

Виды заданий, встречающиеся в проверочных, контрольных, экзаменационных работах (примеры заданий цитируются по демонстрационной версии ЕГЭ 2007 г.)

Обучающая часть

Приступая к работе с тетрадью, внимательно изучите примеры заданий разных видов. Научитесь их узнавать. Тестовые задания делятся на следующие виды.

1. Задания с выбором одного правильного ответа из нескольких.

Отвечая на подобный вопрос необходимо очень внимательно его прочитать и точно понять его смысл. О чем спрашивается в вопросе? О признаках научного метода исследования. Что является этими признаками? Особенности строения и число хромосом. Можно ли обнаружить эти признаки, не проникая в клетку? Нет, нельзя. Какой из перечисленных методов позволяет проникнуть в клетку с помощью микроскопа? Только цитогенетический. Значит это и будет правильным ответом.
Можно выбрать и другой, более длинный, путь рассуждений, вспоминая особенности других методов исследования.

Выбор правильного ответа на этот вопрос может быть как предельно простым, так и достаточно сложным. Если вы точно поняли смысл вопроса и знаете, что хроматида отличается от молекулы ДНК по своей структуре и образуется в процессе деления клетки в интерфазе митоза, то выбор прост – правильный ответ – 1.
Сомнения могут привести к следующим рассуждениям: пункты 2 и 3 достаточно очевидны, и их нельзя выбирать в качестве правильного ответа. В неделящейся клетке хроматиды не образуются, а кольцевая молекула ДНК, существующая в бактериальной клетке, не обладает структурой хроматиды. Могут смутить пункты 1 и 4, т.к. память подсказывает, что хромосома состоит из двух хроматид, а молекула ДНК – из двух цепей. Вот тут и следует еще раз прочитать вопрос и вдуматься в его смысл. ДНК – это часть хроматиды, поэтому правильный ответ – 1.

2. Задания с выбором нескольких правильных ответов.

Для выполнения задания с выбором нескольких правильных ответов нужно хорошо помнить признаки объекта или уметь делать выводы на основании уже имеющейся у вас информации. Данный вопрос требует от вас как точного знания, памяти, так и умения вывести правильные ответы на основании имеющейся у вас информации. Сначала попытайтесь выбрать те пункты, в которых вы уверены. Например, вы точно знаете, что все клетки имеют цитоплазму. Следовательно, первый выбранный пункт – 2. Все клетки покрыты клеточной мембраной, либо их органоиды имеют мембранное строение. Значит и пункт 4 можно выбрать в качестве правильного. Логика подсказывает, что не может существовать клетка без белков, ибо любая живая система использует белки в качестве структурного компонента. Но эти белки должны синтезироваться, а значит должен быть аппарат, на котором проходит биосинтез. Это рибосомы. Значит и ответ 6 верен.

Вы можете выбрать и другой путь рассуждения, но в целом он будет похож на предложенный нами.

3. Задания на сопоставление объекта с его свойствами, особенностями

Соотнести, сопоставить – это значит связать между собой объект и его свойства, качества. Так, например, объектом может быть определенная наука – анатомия или физиология, а его свойствами – предмет изучения науки, т.е. те явления или процессы, которые она изучает.

Задания этого типа требуют от вас такой операции, как выбор признаков для сравнения объектов. Отвечая на эти вопросы, необходимо воспользоваться знаниями, которые у вас есть. Некоторые из них вы приобрели не только на уроках, но и в результате жизненного опыта. Например, вы хорошо знаете, что лягушки развиваются в воде, большинство из них гладкие и скользкие. Вот уже два признака земноводных вы можете отметить. Вы также знаете, что крокодилы, змеи, черепахи и ящерицы откладывают яйца на суше и не заботятся о своем потомстве. Значит, в яйцах должен быть большой запас питательных веществ. Лягушки мечут икру. Это хорошо известный факт. А вот какое у них оплодотворение, следует подумать. Однако в вопросе есть слова «у большинства видов». Если знать, что у пресмыкающихся оплодотворение всегда внутреннее, то понятно, что пункт Б относится к земноводным. С детства вы знаете, что лягушка проходит несколько стадий развития: из яйца появляется головастик, который затем превращается во взрослое земноводное. У пресмыкающиеся таких превращений не происходит. Проанализировав этот комментарий, вы сами можете назвать правильные ответы.

4. Задания на определение последовательности событий, явлений, процессов

При выполнении таких заданий надо уметь представить себе процесс или действие, о котором идет речь. Кроме того, всегда надо искать в вопросе указание, с какого пункта следует начать выстраивать последовательность. Если такого указания нет значит, эта последовательность может быть только строго определенной.

Отвечая на это вопрос, надо определить начальный и конечный моменты процесса. В данном случае конечный момент очевиден – это пункт Д. Вопрос может возникнуть о последовательности пунктов А и Б, но нужно знать, что любые биохимические реакции начинаются с действия ферментов. Следовательно, начальный этап – Б. Тогда раскручивание молекулы – это второй этап (А), далее последовательность становится понятной – сначала разделение частей (В), а затем наращивание новых (Г). Таким образом, ответ: БАВГД.

5. Задания со свободным ответом

C1. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, объясните их.

Этот вопрос требует от вас точного знания признаков царства грибов. Первое предложение не содержит ошибок. В нем нет противоречий ни по одному пункту. Во втором предложении такие противоречия есть. Все ли грибы – многоклеточные организмы? Нет, не все. Дрожжи – это одноклеточные грибы. Также допущены ошибки в 3 и 4 предложениях. Среди грибов автотрофных организмов нет. Они не способны ни к фотосинтезу, ни к хемосинтезу. Наконец, надо помнить, что стенки клеток грибов образованы хитином, а не целлюлозой. Таким образом, правильные ответы на вопросы подобного типа связаны с применением имеющихся знаний и поиском противоречий в вопросе.

Это достаточно сложный вопрос, потому что следует решить, какие признаки нужно назвать. Как должно выглядеть обоснование ответа? Прежде всего, следует помнить, что не нужно отвечать на вопросы слишком пространно. Чем лаконичнее ответ, тем лучше. Он должен быть максимально точен. Приступим к рассуждениям. Какие противоречия необходимо разрешить растениям при выходе из воды на сушу? Первое, что становится очевидным, – защита от потерь воды. В водной среде эта проблема решена. Значит должны быть приспособления, регулирующие процесс испарения. Это устьица, а впоследствии кутикула, видоизмененные листья. Дальше надо вспомнить о том, что растениям необходимо было поднимать воду на определенную высоту. Значит, нужна проводящая система, которая действительно возникла у первых наземных растений. Водные растения были подвижны и эластичны. Их тело колебалось под влиянием течений, но не ломалось. На суше необходимо выдерживать напоры ветра. Поэтому должны были появиться механические ткани, а также органы, закрепляющие растение в почве, – ризоиды, корни, корневища.

Следовательно, ответ может быть таким.

1. Возникновение покровной ткани (эпидермиса с устьицами), способствующей защите от испарения.
2. Появление проводящей системы, обеспечивающей транспорт веществ.
3. Развитие механической ткани, выполняющей опорную функцию.
4. Образование ризоидов, с помощью которых растения закреплялись в почве.

Тренировочная часть

В этой части вы познакомитесь с приемами анализа вопроса, научитесь комментировать как правильные, так и неправильные ответы. Этот опыт покажет вам, что с помощью тестовых заданий можно не только проверять свои знания, но и учиться отвечать на вопросы разных типов.

Тема: «Основные закономерности явлений наследственности»

Моно- и дигибридное скрещивание

Дополните комментарии к ответам.

А10. Какое потомство получится при скрещивании комолой гомозиготной коровы (ген комолости В доминирует) с рогатым быком:

А11. У кареглазого мужчины и кареглазой женщины родились три кареглазых девочки и один голубоглазый мальчик. Ген карих глаз доминирует. Каковы генотипы родителей?

Варианты ответов

1) отец АА, мать Аа
2) отец аа , мать АА
3) отец аа , мать Аа
4) отец Аа , мать Аа

Строение и функции нуклеиновых кислот АТФ

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение - некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК - 2 нм, расстояние между соседними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.



Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина - всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина - тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК - процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая - вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"–5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"–3" - прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации - репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК - иРНК (мРНК), 2) транспортная РНК - тРНК, 3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса - 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты - в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ.

Что такое наследственная информация?

Под наследственной информацией мы понимаем информацию о строении белков и характере синтеза белков в организме человека. Синоним – генетическая информация.

В хранении и реализации наследственной информации ведущую роль играют нуклеиновые кислоты. Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Впервые нуклеиновые кислоты были открыты Ф. Мишером в 1869 г в ядрах лейкоцитов из гноя. Название происходит от латинского nucleus –ядро. Различают два вида нуклеиновых кислот: ДНК и РНК

Функции нуклеиновых кислот

ДНК хранит генетическую информацию. В ДНК находятся гены. РНК принимают участие в биосинтезе белка (т.е. в реализации наследственной информации)

Открытие роли ДНК в хранении наследственной информации. В 1944 г. Oswald Avery, Macklin McCarty, and Colin MacLeod представили доказательства того, что гены находятся в ДНК. Они работали с пневмококками, у которых есть два штамма: патогенный (S-штамм) и непатогенный (R- штамм). Заражение S-штаммом мышей приводит к их гибели

Если вводят R- штамм, то мыши выживают. Из убитых бактерий S-штамма выделили ДНК, белки и полисахариды и добавляли к R- штамму. Добавление ДНК вызывает трансформацию непатогенного штамма в патогенный.

История открытия строения ДНК.

Строение ДНК открыли в 1953 г Дж.Уотсон и Ф.Крик. В своей работе они использовали данные, которые получили биохимик Е.Чаргафф и биофизики Р.Франклин, М.Уилкинс.

Работа Е.Чаргаффа: В 1950 г. биохимик Ервин Чаргафф установил, что в молекуле ДНК:

1) А=Т и Г=Ц

2) Сумма пуриновых оснований (А и Г) равна сумме пиримидиновых оснований (Т и Ц): А+Г=Т+Ц

Или А+Г/Т+Ц=1

Работа Р.Франклин и М.Улкинс: В начале 50-х г.г. биофизики Р.Франклин и М.Уилкинс получили рентгенограммы ДНК, которые показали, что ДНК имеет форму двойной спирали. В 1962 г. Ф.Крик, Дж.Уотсон и Морис Уилкинс получили Нобелевскую премию по физиологии и медицине за расшифровку строения ДНК

Строение ДНК

ДНК – это полимер, который состоит из мономеров – нуклеотидов. Строение нуклеотида ДНК: нуклеотид ДНК состоит из остатков трех соединений:

1) Моносахарида дезоксирибозы

2) Фосфата - остатка фосфорной кислоты

3) Одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц).

Азотистые основания: А и Г – производные пурина (два кольца), Т и Ц- производные пиримидина (одно кольцо).

А комплементарен Т

Г комплементарен Ц

Между А и Т образуется 2 водородные связи, между Г и Ц - 3

В нуклеотиде атомы карбона в дезоксирибозе пронумерованы от 1’ до 5’.
К 1’-карбону присоединяется азотистое основание, а к 5’-карбону – фосфат. Нуклеотиды соединяются между собой фосфодиэфирными связями. В результате образуется полинуклеотидная цепьСкелет цепи состоит из чередующихся молекул фосфата и сахара дезоксирибозы.

Азотистые основания расположены сбоку молекулы. Один из концов цепи обозначают 5’, а другой - 3’ (по обозначению соответствующих атомов карбона). На 5’ – конце находится свободный фосфат, это начало молекулы. На 3’- конеце находится ОН-группа. Это хвост молекулы. Новые нуклеотиды могут присоединяться к 3’- концу.

Строение ДНК:

Согласно модели Крика –Уотсона, ДНК состоит из двух полинуклеотидных цепей, которые свернуты в спираль. Спираль правая (В-форма)

Цепи в ДНК расположены антипараллельно. 5’-конец одной полинуклеотидной цепи соединяется с 3’-концом другой.

В молекуле ДНК видны маленькая и большая борозды.

К ним присоединяются разные регуляторные белки.

В двух цепях азотистые основания расположены по принципу комплементарности и соединены водородными связями

А и Т – двумя водородными связями

Г и Ц - тремя

Размеры ДНК: толщина молекулы ДНК составляет 2 нм, расстояние между двумя витками спирали – 3,4 нм, в одном полном витке - 10 пар нуклеотидов. Средняя длина одной пары нуклеотидов 0,34 нм. Длина молекулы варьирует. В бактерии кишечная палочка кольцевидная ДНК имеет длину 1,2 мм. У человека суммарная длина 46 ДНК, выделенных из 46 хромосом составляет около 190 см. Следовательно, средняя длина 1 молекулы ДНК человека более 4 см.

Линейное изображение ДНК. Если цепи ДНК изображают в виде линии, то принято вверху изображать цепь в направлении от 5‘ к 3‘.

5‘ АТТГТЦЦГАГТА 3‘

3‘ ТААЦАГГЦТЦАТ 5"

Локализация ДНК в клетках эукариот:

1) Ядро – входит в состав хромосом;

2) Митохондрии;

3) У растений – пластиды.

Функция ДНК: хранит наследственную (генетическую) информацию. В ДНК находятся гены. У человека в клетке менее 30 000 генов.

Свойства ДНК

Способность к самоудвоению (редупликации) Редупликация – синтез ДНК.

Способность к репарации – восстановлению повреждений ДНК.

Способность к денатурации и ренатурации. Денатурация – под действием высокой температуры и щелочей разрываются водородные связи между цепями ДНК и ДНК становится однонитевой. Ренатурация – обратный процесс. Это свойство используется в ДНК-диагностике.

Редупликация – это синтез ДНК.

Процесс идет перед делением клетки в синтетическом периоде интерфазы.

Суть процесса: Фермент геликаза разрывает водородные связи между двумя цепями ДНК и раскручивает ДНК. На каждой материнской цепи по принципу комплементарности синтезируется дочерняя цепь. Процесс катализирует фермент ДНК-полимераза.

В результате редупликации образуется две дочерние ДНК, которые имеют такое же строение как и материнская молекула ДНК.

Рассмотрим процесс редупликации более подробно

1) Редупликация – полуконсервативный процесс, т.к. дочерняя молекула получает одну нить от материнской ДНК, а вторую синтезирует вновь

2) ДНК синтезируется из нуклеотидов с тремя фосфатами – АТФ, ТТФ,ГТФ,ЦТФ. При образовании фосфодиэфирной связи два фосфата выщепляются.

3) Синтез ДНК начинается в определенных точках – точках инициации репликации. В этих участках много А-Т пар. Специальные белки присоединяются к точке инициации.

Фермент геликаза начинает раскручивать материнскую ДНК. Нити ДНК расходятся.

Редупликацию катализирует фермент ДНК-полимераза.
От точки инициации фермент ДНК-полимераза движется в двух противоположных направлениях. Между расходящимися цепями образуется угол- репликационная вилка.

3) Цепи материнской ДНК антипараллельны. Дочерние цепи синтезируются антипараллельно материнским, поэтому синтез дочерних цепей в области репликационной вилки идет в двух противоположных направлениях. Синтез одной цепи идет в направлении движения фермента. Эта цепь синтезируется быстро и непрерывно (лидирующая). Вторая синтезируется в противоположном направлении маленькими фрагментами – фрагментами Оказаки (отстающая цепь).

4) Фермент ДНК-полимераза не может сам начать синтез дочерней цепи ДНК.

Синтез лидирующей цепи и любого фрагмента Оказаки начинается с синтеза праймера. Праймер - кусочек РНК длиной 10-15 нуклеотидов. Праймер синтезирует фермент праймаза из нуклеотидов РНК. К праймеру ДНК-полимераза присоединяет нуклеотиды ДНК.

В последующем праймеры вырезаются, брешь застраивается нуклеотидами ДНК.

Фрагменты сшиваются ферментами - лигазами

5) Ферменты, участвующие в редупликации: геликаза, топоизомераза, дестабилизирующие белки, ДНК-полимераза, лигаза.

6) Молекула ДНК длинная. В ней образуется большое число точек начала репликации.
ДНК синтезируется фрагментами – репликонами. Репликон – участок между двумя точками инициации репликации. В соматической клетке человека в 46 хромосомах более 50000 репликонов. Синтез ДНК 1 соматической клетки человека длится более 10 часов.

Репликация ДНК

Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый англ. replisome ) .

История изучения

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя ( г.) . Ранее существовали и две другие модели: «консервативная» - в результате репликации образуется одна молекула ДНК, состоящая только из родительских цепей, и одна, состоящая только из дочерних цепей; «дисперсионная» - все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК.

Общие представления

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

  1. инициация репликации
  2. элонгация
  3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон . Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий , как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды , которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл , так и тысяч копий .

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окруженный более протяженными участками нереплицированной ДНК .

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза . Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 - у эукариот .

Молекулярный механизм репликации

Ферменты (хеликаза , топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы , способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку , и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Характеристики процесса репликации

Примечания

Литература

  • Сохранение ДНК в ряду поколений: Репликация ДНК (Фаворова О.О., СОЖ, 1996) PDF (151 KB)
  • Репликация ДНК (анимация) (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Репликация ДНК" в других словарях:

    репликация днк - – биосинтез новых ДНК на матрице материнской ДНК … Краткий словарь биохимических терминов

    репликация ДНК - DNR biosintezė statusas T sritis chemija apibrėžtis Fermentų katalizuojama polinukleotidinė DNR sintezė ant DNR matricos. atitikmenys: angl. DNA replication rus. репликация ДНК ryšiai: sinonimas – DNR replikacija … Chemijos terminų aiškinamasis žodynas

    - (от позднелат. replicatio повторение), редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к т, обеспечивающий точное копирование генетич. информации и передачу её от поколения к поколению. В основе механизма Р.… … Биологический энциклопедический словарь

    - (от позднелат. replicatio повторение) (ауторепродукция аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называется также удвоение хромосом, в основе которого лежит репликация … Большой Энциклопедический словарь

    - (дезоксирибонуклеиновая кислота), НУКЛЕИНОВАЯ КИСЛОТА, которая является основным компонентом ХРОМОСОМ ЭУКАРИОТОВЫХ клеток и некоторых ВИРУСОВ. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится ГЕНЕТИЧЕСКИЙ КОД,… … Научно-технический энциклопедический словарь

    Репликация неуправляемая - * рэплікацыя некіруемая * runaway replication множественная репликация ДНК плазмид, которая не связана с делением клетки и не контролируется этим делением … Генетика. Энциклопедический словарь

    Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

    Схематическое изображение процесса репликации, цифрами отмечены: (1) запаздывающая нить, (2) лидирующая нить, (3) ДНК полимераза (Polα), (4) ДНК лигаза, (5) РНК праймер, (6) ДНК праймаза, (7) фрагмент Оказаки, (8) ДНК полимераза (Polδ), (9)… … Википедия

    - (от позднелат. replicatio повторение) (ауторепродукция, аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называют также удвоение хромосом, в основе которого лежит репликация … Энциклопедический словарь

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Рекомендуем почитать

Наверх